Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells.
نویسندگان
چکیده
Defects in the PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor gene have been found in many human cancers including breast and prostate. Here we show that PTEN suppresses androgen receptor (AR) activity via a phosphatidylinositol-3-OH kinase/Akt-independent pathway in the early passage numbers prostate cancer LNCaP cells. We provide the direct links between PTEN and androgen/AR signaling by demonstrating that AR directly interacts with PTEN. The interaction between PTEN and AR inhibits the AR nuclear translocation and promotes the AR protein degradation that result in the suppression of AR transactivation and induction of apoptosis. The minimum interaction peptide within AR (amino acids 483-651) disrupts the interaction of PTEN with AR and reduces the PTEN effect on AR transactivation and apoptosis. Genetic approaches using PTEN-null mouse embryonic fibroblasts (MEFs) further demonstrate that both AR expression and AR activity were much higher in PTEN-null MEFs than wild-type MEFs, and reintroducing PTEN into PTEN-null MEFs dramatically reduced AR protein levels and AR activity. Interestingly, we also found that PTEN could suppress AR activity via the phosphatidylinositol-3-OH kinase/Akt-dependent pathway in the higher passage number LNCaP cells, because restoration of Akt activity blocks the effect of PTEN on AR activity. Together, these contrasting PTEN effects on AR activity in the same prostate cancer cell line with different passage numbers suggest that PTEN, via distinct mechanisms, differentially regulates AR in various stages of prostate cancers.
منابع مشابه
GATA2 negatively regulates PTEN by preventing nuclear translocation of androgen receptor and by androgen-independent suppression of PTEN transcription in breast cancer.
The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) plays important roles in tumor development and progression. Among many functions, PTEN negatively regulates the AKT anti-apoptotic signaling pathway, while nuclear PTEN affects the cell cycle by repressing the mitogen-activated protein kinase pathway. However, the regulation of PTEN expression is still not ...
متن کاملResveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines
The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating...
متن کاملFoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment.
FoxO (mammalian forkhead subclass O) proteins are transcription factors acting downstream of the PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor. Their activity is negatively regulated by AKT-mediated phosphorylation. Our previous studies showed that the transcriptional activity of the androgen receptor (AR) was inhibited by PTEN in an AKT-sensitive manner. Here,...
متن کاملGenomic Rearrangements of PTEN in Prostate Cancer
The phosphatase and tensin homolog gene (PTEN) on chromosome 10q23.3 is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen-independent progression. Studies ...
متن کاملKnockdown of Phospholipase Cɛ (PLCɛ) Inhibits Cell Proliferation via Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN)/AKT Signaling Pathway in Human Prostate Cancer
BACKGROUND Phospholipase Cε (PLCε), a member of the plc family, has been extensively studied to reveal its role in the regulation of different cell functions, but understanding of the underlying mechanisms remains limited. In the present study, we explored the effects of PLCε on PTEN (phosphatase and tensin homolog deleted on chromosome 10) in cell proliferation in prostate cancer cells. MATERI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2004